PbS near-infrared detector
Single-Pixel thin-film encapsulated

Features

- Bondable electrode for COB mounting
- High durability for rugged operation
- Very high sensitivity
- Suitable for automated wire-bonding
- Room temperature operation

Applications

- Flame monitoring
- Flame and spark detection
- Gas detection and analysis
- Spectroscopy
- Temperature measurement
- Moisture measurement

Electrical and optical characteristics

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Active area [mm x mm]</th>
<th>Peak responsivity S [V/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Typ.</td>
</tr>
<tr>
<td>PbS010010BC</td>
<td>1 x 1</td>
<td>8 \cdot 10^5</td>
</tr>
<tr>
<td>PbS020020BC</td>
<td>2 x 2</td>
<td>4 \cdot 10^5</td>
</tr>
<tr>
<td>PbS030030BC</td>
<td>3 x 3</td>
<td>3 \cdot 10^5</td>
</tr>
<tr>
<td>PbS060060BC</td>
<td>6 x 6</td>
<td>1.4 \cdot 10^5</td>
</tr>
<tr>
<td>PbS010050BC*</td>
<td>1 x 5</td>
<td>3.5 \cdot 10^5</td>
</tr>
</tbody>
</table>

* Dark resistance R_0 [MΩ] = 0.05 - 1

- Measured with 1550 nm LED, incident power 16 µW/cm²
- Measured in a voltage divider circuit with 1 MΩ load resistor
- Photo responsivity and detectivity calculated for a voltage divider circuit with matched resistance and 50 V/mm

<table>
<thead>
<tr>
<th>Element temperature [°C]</th>
<th>Peak wavelength λP [µm]</th>
<th>20% cut-off wavelength λC [µm]</th>
<th>Peak D* (620 Hz, 1 Hz) [cm·Hz½/W]</th>
<th>Time constant [µs]</th>
<th>Dark resistance R_0 [MΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2.7</td>
<td>2.9</td>
<td>1 \cdot 10^{11}</td>
<td>0.8 \cdot 10^{11}</td>
<td>200</td>
</tr>
</tbody>
</table>

Die attach

- Use clean, soft rubber tip for pick and place handling
- UV-curing is not suitable due to permanent damage by UV light exposure
- Element temperature should never exceed +70°C

Wire-bonding

- Electrodes are optimized for room temperature Al wire wedge bonding
- Element temperature should never exceed +70°C
PbS near-infrared detector

Single-Pixel thin-film encapsulated

Typical spectral response

![Typical spectral response graph](image)

Typical frequency response

![Typical frequency response graph](image)

Typical resistance change over temperature

![Typical resistance change over temperature graph](image)

Storage

- Storage temperature: -55°C to +70°C
- Exposure to UV light results in permanent damage
- Prolonged exposure to visible light results in temporary low dark resistance

Handling

- Active area is scratch sensitive, protect top surface from any mechanical contact
- Ensure dust-free environment for device handling
- Operating temperature: -30°C to +70°C

Options

- Custom windows and filters
- Custom packages upon request
- Evaluation Kit available
PbS near-infrared detector
Single-Pixel thin-film encapsulated

Exemplary mechanical outlines (dimensions in mm)

PbS020020BC

Schematic

1 Photoresistor R₀

1 Electrode 1

2 Electrode 2

Bondable surface
PbS near-infrared detector
Single-Pixel thin-film encapsulated

Exemplary circuit

![Exemplary circuit diagram]

- V_B: Bias voltage
- V_O: Output voltage
- R_D: Dark resistance of the detector
- R_L: Load resistor
- C_F: Filter capacitor
- R_F: Filter resistor
- R_I: Feedback resistor
- R_T: Gain resistor

Regulatory

For the use of trinamiX PbS and PbSe infrared photodetectors in medical devices, monitoring and control instruments and consumer applications RoHS exemptions apply.

For automotive applications trinamiX PbS and PbSe infrared photodetectors fall under ELV exemption.