PbS near-infrared detector
Single-Pixel double encapsulated in TO package

Features
• Double encapsulation (thin-film and TO package)
• High durability for rugged operation
• Very high sensitivity
• Room temperature operation
• Sapphire window

Applications
• Flame monitoring
• Flame and spark detection
• Gas detection and analysis
• Spectroscopy
• Temperature measurement
• Moisture measurement

Electrical and optical characteristics

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Active area [mm x mm]</th>
<th>Peak responsivity S [V/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Typ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>PbSO05005TO5</td>
<td>0.5 x 0.5</td>
<td>16 \cdot 10^5</td>
</tr>
<tr>
<td>PbSO10010TO5</td>
<td>1 x 1</td>
<td>8 \cdot 10^5</td>
</tr>
<tr>
<td>PbSO20020TO5</td>
<td>2 x 2</td>
<td>4 \cdot 10^5</td>
</tr>
<tr>
<td>PbSO30030TO5</td>
<td>3 x 3</td>
<td>3 \cdot 10^5</td>
</tr>
<tr>
<td>PbSO60060TO8</td>
<td>6 x 6</td>
<td>1.4 \cdot 10^5</td>
</tr>
<tr>
<td>PbSO10050TO5*</td>
<td>1 x 5</td>
<td>3.5 \cdot 10^5</td>
</tr>
</tbody>
</table>

* Dark resistance R_D [MΩ] = 0.05 - 1

• Measured with 1550 nm LED, incident power 16 µW/cm²
• Measured in a voltage divider circuit with 50 V/mm
• Photo responsivity and detectivity are measured with constant load resistance ($R_L = 1$ MΩ) and calculated for matched resistance

<table>
<thead>
<tr>
<th>Element temperature [°C]</th>
<th>Peak wavelength λ_P [µm]</th>
<th>20% cut-off wavelength λ_C [µm]</th>
<th>Peak D* (620 Hz, 1 Hz) [cm-Hz⁰.⁵/W]</th>
<th>Time constant [µs]</th>
<th>Dark resistance R_D [MΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2.7</td>
<td>2.9</td>
<td>1.1 \cdot 10^{11}</td>
<td>0.8 \cdot 10^{11}</td>
<td>200</td>
</tr>
</tbody>
</table>
PbS near-infrared detector
Single-Pixel double encapsulated in TO package

Typical spectral response

![Typical Spectral Response](image1)

Typical frequency response

![Typical Frequency Response](image2)

Typical resistance change over temperature

![Typical Resistance Change](image3)

Storage

- Storage temperature: -55°C to +70°C
- Exposure to UV light results in permanent damage
- Prolonged exposure to visible light results in temporary low dark resistance

Handling

- Ensure dust-free environment for device handling
- Operating temperature: -30°C to +70°C

Options

- Custom windows and filters
- 1-stage or 2-stage Thermoelectric cooler (TEC) including thermistor
- Built-in internal LED for illumination and detection
- Custom packages upon request
- Evaluation Kit available
PbS near-infrared detector
Single-Pixel double encapsulated in TO package

TO5 exemplary package outlines (mm)

PbS020020TO5

Bottom view

Side view

Top view

Schematic

1. Electrode 1
2. GND
3. Electrode 2

This document, or any answers or information provided herein by trinamiX GmbH does not constitute a legally binding obligation of trinamiX GmbH. While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, it is provided for your guidance only. Because many factors may affect processing or application/use, we recommend that you make tests to determine the suitability of a product for your particular purpose prior to use. It does not relieve our customers from the obligation to perform a full inspection of the products upon delivery or any other obligation. No warranties of any kind, either express or implied, including warranties of merchantability or fitness for a particular purpose, are made regarding products described or designs, data or information set forth, or that the products, designs, data or information may be used without infringing the intellectual property rights of others. In no case shall the descriptions, information, data or designs provided be considered a part of our terms and conditions of sale.
PbS near-infrared detector
Single-Pixel double encapsulated in TO package

TO8 exemplary package outlines (mm)

PbS060060TO8

Bottom view

Side view

Top view

Schematic

1. Photoresistor R_0
2. Electrode 1
3. Electrode 2

This document, or any answers or information provided herein by trinamiX GmbH does not constitute a legally binding obligation of trinamiX GmbH. While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, it is provided for your guidance only. Because many factors may affect processing or application/use, we recommend that you make tests to determine the suitability of a product for your particular purpose prior to use. It does not relieve our customers from the obligation to perform a full inspection of the products upon delivery or any other obligation. No warranties of any kind, either express or implied, including warranties of merchantability or fitness for a particular purpose, are made regarding products described or designs, data or information set forth, or that the products, designs, data or information may be used without infringing the intellectual property rights of others. In no case shall the descriptions, information, data or designs provided be considered a part of our terms and conditions of sale.
Exemplary circuit

![Exemplary circuit diagram](image)

- V_B: Bias voltage
- V_O: Output voltage
- R_D: Dark resistance of the detector
- R_L: Load resistor
- C_F: Filter capacitor
- R_F: Filter resistor
- R_I: Feedback resistor
- R_G: Gain resistor

Regulatory

For the use of Hertzstück™ PbS and PbSe infrared photodetectors in medical devices, monitoring and control instruments and consumer applications RoHS exemptions apply.

For automotive applications Hertzstück™ PbS and PbSe infrared photodetectors fall under ELV exemption.